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Abstract

A linear vibrational system with multiple degrees of freedom subjected to parametric excitation is considered. It is

assumed that the system is statically unstable but close to a critical point, the excitation amplitude and damping are small,

and the excitation frequency is arbitrary. A new stabilization condition is derived in terms of integrals depending on

eigenfrequencies and modes of the undisturbed conservative system and the symmetric excitation matrix. As a special case,

an approximation for high-frequency excitation is deduced from this condition. Influence of damping on stabilization

region is shown to be very small. Two examples for systems with one and two degrees of freedom are presented. It is shown

that stabilization of statically unstable systems is possible for low, medium and high excitation frequencies.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Perhaps, Stephenson [1] was the first who showed 100 years ago that a pendulum in its inverted, statically
unstable position can be stabilized by suitably high-frequency excitation of the pivot. He also confirmed his
theoretical prediction by a practical demonstration of the phenomenon. Then, in his subsequent, less known
paper Stephenson [2] showed that an inverted double and even triple pendulum can be stabilized in the same
way.

Among other works on stabilization of statically unstable systems we should mention the contributions by
Kapitza [3,4], Chelomei [5,6], Bogoliubov and Mitropol’sky [7], Acheson [8], Acheson and Mullin [9],
Chelomei [10], Blekhman [11], Champneys and Fraser [12], Thomsen [13], Seyranian and Seyranian [14],
Yabuno and Tsumoto [15] and many others. All these works deal with high-frequency stabilization problems.
However, in the recent paper by Seyranian and Seyranian [16] it is shown that a statically unstable elastic
beam, compressed by an axial periodic force, can be stabilized in its horizontal position by the excitation
frequencies of the order of the main frequency of transverse vibrations of the beam.

Formally, the theory of high-frequency excitation is based on the assumption that the excitation frequency
O is much higher than all eigenfrequencies of the system. Thus, 1=O is considered as a small parameter. In our
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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paper, we do not impose restrictions on the excitation frequency. It is quite natural and necessary, for
example, for stabilization problems of infinite degree-of-freedom systems, having arbitrarily high
eigenfrequencies corresponding to higher modes.

In this paper we raise a new question: Can a statically unstable system be stabilized by medium- or low-
frequency excitation? In our study, we focus on systems, which are weakly unstable. Such systems depend on a
parameter p, taken close to a critical stability value p0. In other words, we study stabilization by periodic
excitation for arbitrary O assuming that Dp ¼ p� p0 is a small parameter (on the contrary to the high-
frequency approach when Dp is arbitrary and 1=O is small). Excitation amplitude d is also assumed to be small.

Our approach is based on the analysis of bifurcations of multiple multipliers of a periodic system [17] with
respect to small parameters Dp and d (a double multiplier with a Jordan block that appears at p0 and d ¼ 0).
This approach is used in Section 2 to derive a stabilization condition for a general linear finite-degrees-of-
freedom vibrational system with arbitrary excitation frequency O. In Section 3 we rewrite this condition in
terms of eigenfrequencies and modes of the undisturbed conservative system, determining explicitly
the stabilizing or destabilizing effect of each mode. The effect of dissipative forces is discussed in Section 4.
We show that this effect is typically very small. In Section 5, from the obtained formulae we derive
approximation for high-frequency excitation. In Section 6 we present simple examples of systems with one and
two degrees of freedom. In the second example it is shown that, away from parametric resonance regions,
stabilization by parametric excitation is possible for the whole range of excitation frequencies: low, medium
and high compared to the second eigenfrequency of the system. Some complicated derivations are collected in
Appendices A and B.

2. Influence of periodic excitation on the stability bound

Consider a linear vibrational system of the form

M€qþ ðCðpÞ þ dBðtÞÞq ¼ 0, (1)

whereM, C and B are real symmetric n� n matrices, p and d are real constant parameters, and the dots denote
derivatives with respect to time t. The matrix M is positive definite, and the matrix BðtÞ ¼ Bðtþ TÞ is time-
periodic with period T ¼ 2p=O and frequency O. Taking d ¼ 0, we obtain the autonomous conservative
system

M€qþ Cq ¼ 0. (2)

The trivial solution q � 0 is stable if the matrix CðpÞ is positive definite. In this case the eigenfrequencies
0oo1p � � �pon and corresponding eigenmodes wk for system (2) satisfy the following equations and
orthonormality conditions

Cwk ¼ o2
kMwk; wT

kMwk0 ¼ dk0

k , (3)

where dk0

k is the Kronecker delta.
Eqs. (1)–(3) remain unchanged under the transformation (changing the time scale)

t ¼ T t̃; C ¼ C̃=T2; BðtÞ ¼ B̃ðt̃Þ=T2; ok ¼ õk=T , (4)

where the matrix B̃ðt̃Þ ¼ B̃ðt̃ þ T̃ Þ has period T̃ ¼ 1. So, below we assume that T ¼ 1, omitting the tildes.
Let p ¼ p0 be the critical value, such that system (2) is stable at pop0 and unstable at p4p0. Then the matrix

C0 ¼ Cðp0Þ is singular, i.e., has zero eigenvalue. We consider a generic case, when there is a single critical mode
described by the eigenvector w1:

C0w1 ¼ 0, (5)

i.e., o1 ¼ 0 and 0oo2p � � �pon. Since the system is stable for pop0, the matrix CðpÞ � C0 þ ðdC=dpÞDp is
positive definite for small negative Dp ¼ p� p0. In particular, wT

1Cw140, which via Eq. (5) leads to the
condition

wT
1C1w1o0; C1 ¼ dC=dp

��
p¼p0

. (6)
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System (1) can be written as

_x ¼ AðtÞx (7)

with

x ¼
q

_q

 !
; AðtÞ ¼

0 I

�M�1ðCðpÞ þ dBðtÞÞ 0

 !
, (8)

where I and 0 are the identity and zero n� n matrices, respectively. The matrix AðtÞ ¼ Aðtþ 1Þ is periodic and
depends on constant parameters p and d. At d ¼ p� p0 ¼ 0, the matrix

A0 ¼
0 I

�M�1C0 0

 !
(9)

is time independent. It has a double zero eigenvalue with second-order Jordan block structure:

A0u0 ¼ 0; A0u1 ¼ u0 (10)

with the eigenvector and associated vector (generalized eigenvectors)

u0 ¼
w1

0

� �
; u1 ¼

0

w1

 !
. (11)

We also define the left eigenvectors

v0 ¼
0

Mw1

 !
; v1 ¼

Mw1

0

� �
(12)

that satisfy the equations and orthonormality conditions

vT0A0 ¼ 0; vT1A0 ¼ vT0 ; vT0 u0 ¼ vT1 u1 ¼ 0; vT1 u0 ¼ vT0 u1 ¼ 1. (13)

Let us introduce a fundamental matrix XðtÞ for system (7) satisfying the equation with the initial condition

_X ¼ AðtÞX; Xð0Þ ¼ I. (14)

This matrix gives a solution xðtÞ ¼ XðtÞx0 of system (1) with an arbitrary initial condition xð0Þ ¼ x0. The
Floquet (monodromy) matrix is defined as

F ¼ Xð1Þ. (15)

The eigenvalues r of the Floquet matrix are called multipliers. Multipliers of system (1) possess the symmetry:
if r is the multiplier, then 1=r is also a multiplier [18]. The trivial solution q � 0 is stable if and only if all the
multipliers lie on the unit circle jrj ¼ 1 and do not form Jordan blocks.

For d ¼ 0 and p ¼ p0, system (14) becomes _X ¼ A0X. Since A0 is time independent, we have

X0ðtÞ ¼ expðtA0Þ; F0 ¼ expðA0Þ. (16)

It is easy to see that

X0u0 ¼ u0; X0u1 ¼ u1 þ tu0; vT0X0 ¼ vT0 ; vT1X0 ¼ vT1 þ tvT0 , (17)

and similar expressions for F0 with t ¼ 1. This means that F0 has a double multiplier r0 ¼ 1 with the right and
left Jordan chains u0, u1 and v0, v1.

The other multipliers r ¼ expð�iokÞ, k ¼ 2; . . . ; n, are assumed to be simple and complex (the system is not
at the resonance). This means that

ok � ok0a2pj (18)

for any positive integers k, k0, j. For arbitrary period T ¼ 2p=O, this condition takes the form
Oaðok � ok0 Þ=j. Stability analysis in the resonance cases ok � ok0 � 2pj with k; k041 can be carried out
using methods of parametric resonance theory, see e.g., Ref. [17]. The resonances with k0 ¼ 1, so that
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ok � 2pj, are degenerate: at the resonance point, the multiplicity of the multiplier r ¼ 1 increases to 4. These
cases require special study and are not considered in this paper. Below in this section we assume that the
system is not close to resonances.

For small perturbations of parameters p and d, simple multipliers r ¼ expð�iokÞ, k ¼ 2; . . . ; n, remain on
the unit circle jrj ¼ 1. Hence, for stability, we have to study only the perturbation of the double multiplier
r ¼ 1.

Perturbation of this double multiplier is described by the asymptotic formula [17, pp. 37, 38]

r ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gpDpþ gdd

q
; ga ¼ vT0

qF
qa

u0; a 2 fp; dg, (19)

where derivatives are taken at p ¼ p0, d ¼ 0. Using Eq. (19) in the equality jrj ¼ 1 gives the first-order stability
condition as

gpDpþ gddo0. (20)

For derivatives of the Floquet matrix one has the formula [17, p. 280]

qF
qa
¼ F0

Z 1

0

HaðtÞdt; HaðtÞ ¼ X�10 ðtÞ
qA
qa

X0ðtÞ. (21)

Using Eqs. (8), (11), (12), (17), (21) in Eq. (19), we find

gp ¼ �w
T
1C1w1; gd ¼ �w

T
1Bw1; B ¼

Z 1

0

BðtÞdt. (22)

Thus, condition (20) takes the form

wT
1C1w1ðp� p0Þ þ wT

1Bw1d40. (23)

Recall that wT
1C1w1o0.

Below let us consider the case B ¼ 0. Then the first approximation (23) yields pop0. Thus, the stabilization
effect is described by the second-order approximation. The general form of the stabilization condition
becomes

pop0 þ ad2=2þ oðd2Þ (24)

with an unknown coefficient a. The critical value of p (stability boundary) is

pcr ¼ p0 þ ad2=2þ oðd2Þ. (25)

Consider a perturbation along the stability boundary p ¼ p0 þ ad2=2þ oðd2Þ. Since Dp�d2 and gd ¼ 0, the
square root term in Eq. (19) is proportional to d and, hence, exceeds the order of the expression oðd1=2Þ. In this
degenerate case, the asymptotic expression for r starts with the first power of d as [17]

r ¼ 1þ mdþ oðdÞ, (26)

where two different values of m are determined from the quadratic equation

m2 þ a1mþ a2 ¼ 0. (27)

The coefficients a1 and a2 are [17, p. 39]

a1 ¼ �vT0
qF
qd

u1 � vT1
qF
qd

u0,

a2 ¼ vT0
qF
qd

G�1
qF
qd
�

1

2

q2F

qd2

� �
u0 �

1

2
vT0

qF
qp

u0
d2p

dd2
,

G ¼ F0 � Iþ u1v
T
1 . (28)

Note that we took the term u1v
T
1 in the matrix G instead of v0v

T
1 suggested in Ref. [17]; in fact, one can show

that using any diadic product zvT1 with the vector z, not proportional to u0, gives the same value of a2.
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Using Eqs. (8), (11), (12), (17), (21) in Eq. (28), we find a1 ¼ wT
0Bw0 ¼ 0 due to B ¼ 0. Then m ¼ �

ffiffiffiffiffiffiffiffiffi
�a2
p

.
The stability condition jrj ¼ 1 with the expansion (26) yields a240; equation a2 ¼ 0 is the critical (stability
boundary) condition. The last term for a2 in Eq. (28) is found in Eqs. (19), (22) with d2p=dd2 ¼ a according to
Eq. (25). Using Eq. (28) in the condition a2 ¼ 0 yields the unknown constant

a ¼ 2vT0
1

2

q2F

qd2
�

qF
qd

G�1
qF
qd

� �
u0

�
ðwT

1C1w1Þ. (29)

The second derivative of the Floquet matrix can be found as [17, p. 281]

q2F

qd2
¼ 2F0

Z 1

0

Z t

0

HdðtÞHdðtÞdtdt (30)

with HdðtÞ defined in Eq. (21).
Expression (25) with the coefficient a given by Eqs. (29), (21), (30) provides the critical load of the system

under parametric excitation. These expressions give a explicitly in the form of integrals in terms of the critical
mode w1 and the matrices M, C0, BðtÞ according to Eqs. (8), (9), (16). Stabilization of a statically unstable
system with p4p0 is possible only if a40. Then, according to Eq. (24), the system is stabilized by the
excitation with amplitudes d4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dp=a

p
.

3. Modal expansion of the critical load

Let us express the coefficient a in terms of the eigenfrequencies ok and eigenmodes wk of the conservative
system (2), (3). In addition to l0 ¼ 0, the matrix A0 possesses the eigenvalues lks ¼ siok with k ¼ 2; . . . ; n and
s ¼ �1. The corresponding right and left eigenvectors are

uks ¼
wk

siokwk

 !
; vks ¼

Mwk=2

Mwk=ð2siokÞ

 !
. (31)

These vectors satisfy the equations and orthonormality conditions

A0uks ¼ siokuks; vTksA0 ¼ siokv
T
ks,

vTksuk0s0 ¼ dk0

k d
s0
s ; vT0 uks ¼ vT1 uks ¼ vTksu0 ¼ vTksu1 ¼ 0; k; k0 ¼ 2; . . . ; n; s;s0 ¼ �1. (32)

Expression (29) can be written in terms of eigenmodes and eigenfrequencies as (the lengthy derivation of this
formula is given in Appendix A)

a ¼
4

wT
1C1w1

Z 1

0

Z t

0

B1ðtÞB1ðtÞðt� 1Þtþ
Xn

k¼2

Im
BkðtÞBkðtÞeiokðt�tÞ

okð1� eiok Þ

" #
dtdt, (33)

where the real scalar quantities BkðtÞ describe the modes interaction through the excitation term

BkðtÞ ¼ wT
1BðtÞwk. (34)

For systems (1) with arbitrary period T , backward substitution of Eq. (4) in Eq. (33) yields

a ¼
4

wT
1C1w1

Z T

0

Z t

0

B1ðtÞB1ðtÞðt� TÞt
T2

þ
Xn

k¼2

Im
BkðtÞBkðtÞeiokðt�tÞ

okTð1� eiokT Þ

" #
dtdt. (35)

Expression (35) determines the change of the critical load (25) in terms of the frequencies and modes of the
initial non-excited system.

In the particular case of harmonic excitation BðtÞ ¼ B0 cosOt, integration in (35) yields

a ¼ �
1

wT
1C1w1

Xn

k¼1

ðwT
1B0wkÞ

2

O2 � o2
k

. (36)
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According to Eq. (6), wT
1C1w1o0. Thus, in the case of harmonic excitation, the eigenmodes with frequencies

okoO supply positive terms in the coefficient a (stabilizing effect), while the eigenmodes with frequencies
ok4O give negative terms in a (destabilizing effect). The term corresponding to the critical mode o1 ¼ 0
is always positive (stabilizing).

4. Effect of dissipative forces

Let us consider system (1) taking into account small dissipation:

M€qþ gD_qþ ðCðpÞ þ dBðtÞÞq ¼ 0, (37)

where D is a real symmetric positive definite n� n matrix, g40 is a small dissipation parameter. As in the
previous section, we take the period T ¼ 1.

The critical parameter pcrðd; gÞ can be expanded in the power series in both d and g:

pcr ¼ p0 þ ðb1gþ b2g2 þ � � �Þ þ ðc1gþ c2g2 þ � � �Þdþ ad2=2þ � � � . (38)

In this section, we study the structure of terms containing g in this expansion.
In the absence of parametric excitation d ¼ 0, dissipative forces cannot stabilize or destabilize a linear

autonomous conservative system [19]. Hence, pcrð0; gÞ � p0, i.e., none of the terms gk, k ¼ 1; 2; . . . is present in
expansion (38). Remark that this statement can also be confirmed by the perturbation technique used in
Section 2.

Assume that the parameter g40 is fixed. System (37) is transformed to the first-order equation (7) with the
matrix

AðtÞ ¼
0 I

�M�1ðCþ dBðtÞÞ �gM�1D

 !
. (39)

At d ¼ p� p0 ¼ 0, this matrix is time independent:

A0 ¼
0 I

�M�1C0 �gM�1D

 !
. (40)

It has the simple zero eigenvalue with the eigenvectors

u0 ¼
w1

0

� �
; v0 ¼

1

gwT
1Dw1

gDw1

Mw1

 !
, (41)

satisfying the normalization condition vT0 u0 ¼ 1.
Let us introduce the matrices (14)–(16) with the new A and A0. Then the eigenvectors (41) satisfy the

equations

F0u0 ¼ X0u0 ¼ u0; vT0X0 ¼ vT0F0 ¼ vT0 , (42)

similar to Eq. (17). This implies that r ¼ 1 is the simple multiplier of the Floquet matrix F0. Derivatives of this
multiplier with respect to p and d are given by [17, p. 290]

qr
qa
¼ r

Z 1

0

vT0X
�1
0 ðtÞ

qA
qa

X0ðtÞu0 dt; a 2 fp; dg. (43)

Using Eqs. (39), (41), (42) in Eq. (43), we obtain the derivatives of the multiplier at the point p� p0 ¼ d ¼ 0 as

qr
qp
¼ �

wT
1C1w1

gwT
1Dw1

40;
qr
qd
¼ �

wT
1Bw1

gwT
1Dw1

¼ 0. (44)

Here we used Eq. (6) and the assumption B ¼ 0.
System (37) is asymptotically stable if all the multipliers lie inside the unit circle jrjo1. First consider the

autonomous system (37) with p ¼ p0 and d ¼ 0. This system has a bounded solution qðtÞ ¼ w1. The other
2n� 1 linear independent solutions decay in time exponentially due to dissipation. This means that all the



ARTICLE IN PRESS
A.A. Mailybaev, A.P. Seyranian / Journal of Sound and Vibration 323 (2009) 1016–10311022
multipliers lie inside the unit circle, except for a simple multiplier r ¼ 1. Under a change of p and d, the
multiplier r ¼ 1 moves along the real axis. The stability condition is ro1. Using Eq. (44), we write this
condition as p� p0 þ oðDp; dÞo0. Hence, the critical value pcr ¼ p0 þ oðdÞ. Since this condition is obtained for
arbitrary g, none of the terms gkd, k ¼ 1; 2; . . . is present in expansion (38).

We conclude that the small dissipation changes the coefficient in relation (25):

pcr ¼ p0 þ aðgÞd2=2þ oðd2Þ, (45)

where að0Þ is given by Eq. (35). We see that the effect of dissipation on the critical parameter is usually very
small. If the excitation matrix is time-reversible BðtÞ ¼ Bðt0 � tÞ for some t0, then system (37) is invariant
under the transformation t! t0 � t and g!�g. Hence, odd powers of g, that change sign under this
transformation, cannot appear in the expansion of pcrðd; gÞ. In this case, the first correcting term due to
dissipation is of order g2d2.
5. High-frequency excitation

Let us consider the case when the frequency of parametric excitation O is much higher than all natural
frequencies of the system o2; . . . ;on. In this case okT51, so we can expand the exponents in Eq. (35) with
respect to okT and okðt� tÞ as

Im
eiokðt�tÞ

okTð1� eiokT Þ
¼

1

o2
kT2
þ

t� t
2T
�
ðt� tÞ2

2T2
�

1

12
þOðT2Þ. (46)

Then, using relation (88) from Appendix B with s ¼ 0; 1; 2, we obtainZ T

0

Z t

0

Im
BkðtÞBkðtÞeiokðt�tÞ

okTð1� eiokT Þ
dtdt ¼

1

T2

Z T

0

Z t

0

BkðtÞBkðtÞðt� TÞtdtdtþOðT4Þ. (47)

Using Eq. (47) in Eq. (35) yields

a ¼
4

T2wT
1C1w1

Xn

k¼1

Z T

0

Z t

0

BkðtÞBkðtÞðt� TÞtdtdtþOðT4Þ. (48)

This expression gives the high excitation frequency asymptotics of Eq. (35). Since the value of the integral in
Eq. (48) is of order T4, we have a�T2�O�2.

We take the matrix BðtÞ in the form of Fourier series

BðtÞ ¼
X1
m¼1

B0m cosðmOtÞ þ B00m sinðmOtÞ; O ¼
2p
T

(49)

(there is no constant term since B ¼ 0). Then the integration in Eq. (48) can be done (see Appendix B) giving

a ¼ �
1

wT
1C1w1

Xn

k¼1

X1
m¼1

ðwT
1B
0
mwkÞ

2
þ ðwT

1B
00
mwkÞ

2

ðmOÞ2
þOðO�4Þ. (50)

Using expansion (81) from Appendix A, the summation with respect to k in Eq. (50) is carried out giving

a ¼ �
1

wT
1C1w1

X1
m¼1

wT
1 ðB
0
mM

�1B0m þ B00mM
�1B00mÞw1

ðmOÞ2
þOðO�4Þ. (51)

This formula yields the coefficient a for high excitation frequency O in terms of Fourier coefficients of the
excitation matrix BðtÞ. In the particular case BðtÞ ¼ B0 cosOt, expression (51) becomes

a ¼ �
wT
1B0M

�1B0w1

wT
1C1w1

O�2 þOðO�4Þ. (52)
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Another form of this expression follows from Eq. (50) as

a ¼ �
O�2

wT
1C1w1

Xn

k¼1

ðwT
1B0wkÞ

2
þOðO�4Þ, (53)

which agrees with Eq. (36) for high excitation frequencies O.
Note that expression (51), which we obtained as the asymptotics of Eq. (35) for high excitation frequencies

O, can also be derived by means of averaging method. Indeed, for large O, the term dðB0m cosðmOtÞ þ

B00m sinðmOtÞÞq in the right-hand side of Eq. (1) can be substituted by the time-independent effective stiffness

term d2Beff
m q with [20]

Beff
m ¼

B0mM
�1B0m þ B00mM

�1B00m

2ðmOÞ2
. (54)

Then by using methods of perturbation theory for autonomous systems [17], we obtain the critical load (25) with

a ¼ �2
X1
m¼1

wT
1B

eff
m w1

wT
1C1w1

, (55)

which coincides with Eq. (51).

6. Examples

In this section we consider examples for systems with one and two degrees of freedom. For a system with
one degree of freedom Eq. (1) is the Hill equation

€qþ ð�pþ dbðtÞÞq ¼ 0, (56)

where bðtÞ is T-periodic function with zero mean value
R T

0 bðtÞdt ¼ 0. Then, from relations (24) and (35) we
obtain the stabilization region in the first approximation as

po
ad2

2
; a ¼

4

T

Z T

0

bðtÞ

Z t

0

bðtÞt dtdt�
2

T2

Z T

0

bðtÞtdt

� �2

. (57)

For T ¼ 2p this formula agrees with that of derived in Ref. [14]. If bðtÞ ¼ cos t, we obtain a ¼ 1, which is well
known, see e.g., Refs. [13,21].

As a second example, consider an inverted double pendulum consisting of two point masses m1 and m2

connected by rigid massless rods of equal length l with two elastic joints of equal stiffness c in the gravitational
field, see Fig. 1. The kinetic and potential energy for this system have the form

K ¼ 1
2
ðm1 þm2Þl

2 _y
2

1 þ
1
2
m2l2 _y

2

2 þm2l
2 _y1 _y2 cosðy1 � y2Þ,

V ¼
cy21
2
þ

cðy2 � y1Þ
2

2
þ ðm1 þm2Þgl cos y1 þm2gl cos y2, (58)

where g is the acceleration of gravity. With the Lagrange function L ¼ K � V we derive equations of motion
of the system linearized near the vertical position y1 ¼ y2 ¼ 0 as

ðm1 þm2Þl
2 €y1 þm2l

2 €y2 þ ð2c� ðm1 þm2ÞglÞy1 � cy2 ¼ 0,

m2l
2
ð€y1 þ €y2Þ � cy1 þ ðc�m2glÞy2 ¼ 0. (59)

Let us consider a periodic excitation of the support z ¼ a cosOt. Then, according to the d’Alembert
principle, in the equations of motion (59) we must substitute g by gþ €z.

For convenience we introduce non-dimensional time and parameters

t̃ ¼ O	t; d ¼
a

l
; p ¼ �

c

m1gl
; Õ ¼

O
O	
; Z ¼

m2

m1
, (60)
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m1
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Fig. 1. Inverted double pendulum subjected to periodic excitation of the support.
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where O	 ¼
ffiffiffiffiffiffiffi
g=l

p
. In non-dimensional variables the linearized equations of motion of the system take the

form of Eq. (1) with BðtÞ ¼ B0 cosOt and the matrices

M ¼
Zþ 1 Z

Z Z

 !
; C ¼

�2p� Z� 1 p

p �p� Z

 !
; B0 ¼ O2

1þ Z 0

0 Z

 !
. (61)

Here and below we omit tildes. The negative parameter p is introduced in order to match the theoretical part
of the paper, where the unstable system corresponds to p4p0.

Taking into account viscous friction forces in the hinges determined by the dissipative function

F ¼ g_y
2

1=2þ gð_y2 � _y1Þ
2=2 yields the system in the form (37) with the dimensionless dissipation parameter

g̃ ¼ g=ðO	m1l
2
Þ and the matrix

D ¼
2 �1

�1 1

� �
. (62)

For the case of no excitation d ¼ 0, system (59) is stable if and only if the matrix C is positive definite.
Simple analysis shows that the matrix C is positive definite when the parameter p satisfies the inequality

pop0; p0 ¼ �
3Zþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Z2 þ 2Zþ 1

p
2

. (63)

At p ¼ p0, we find the eigenfrequencies and the corresponding eigenmodes from Eqs. (3) and (61) as

o1 ¼ 0; w1 ¼ a1
p0

2p0 þ Zþ 1

 !
, (64)

o2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 5þ

1

Z

� �
p0 � 2ðZþ 1Þ

s
; w2 ¼ a2

Zþ o2
2Zþ p0

�o2
2Zþ p0

 !
, (65)

where the scaling coefficients a1 and a2 are obtained from orthonormality conditions (3).
The matrix C1 according to Eqs. (6) and (61) is

C1 ¼
�2 1

1 �1

� �
. (66)
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The constant a is given by Eq. (36) as

a ¼ a1O2 þ
a2O4

O2 � o2
2

; ak ¼ �
ðwT

1B0wkÞ
2

O4wT
1C1w1

. (67)

According to Eq. (61), the coefficients a1 and a2 depend only on the mass-ratio parameter Z. This dependence
is shown in Fig. 2; both a1 and a2 are positive, and a2 vanishes at Z ¼ 0 and 1. The stability condition is given
by inequality (24), which can be written using Eq. (67) as

a1 þ
a2O2

O2 � o2
2

 !
d2O2

2
4Dp; Dp ¼ p� p0. (68)

The second term in the parentheses describes the effect of the second mode o2. It is unimportant for Zt2
when a25a1, and plays an important role for larger Z.

Inequality (68) is a condition for stabilization of the first mode, which is unstable without excitation (d ¼ 0).
Thus, Eq. (68) is a necessary condition giving a lower bound on the stabilizing amplitude d. The instability can
also be associated with the second mode due to resonances, giving upper bounds on the stabilizing excitation
amplitude.

When O � 2o2=j with integer j, the system is subjected to parametric resonance. It is known that the
secondary resonances corresponding to j41 are effectively suppressed by introduction of the damping term
gD in Eq. (37). The primary resonance O � 2o2 represents the most important instability region. In the first
approximation it is given by the inequality [17, p. 350]

z2g2 þ ðO� 2o2Þ
2oxd2, (69)

where

z ¼ wT
2Dw2; x ¼

ðwT
2B0w2Þ

2

4o2
2

. (70)

As we mentioned in Section 2, the values O � o2=j correspond to a specific type of degenerate resonance
associated with the multiplier r ¼ 1 of multiplicity 4, which requires special study.

Let us consider two specific values of Z. For Z ¼ 1, we have p0 ¼ �3:414, o2 ¼ 4:040 and the coefficients
a1 ¼ 2, a2 ¼ 0. Thus, stabilization condition (68) becomes very simple

d2O24Dp. (71)

This is a degenerate case since the effect of the second mode disappears, and the high-frequency stabilization
condition is valid in the whole range of excitation frequencies O.

Fig. 3 shows the stability diagram computed numerically for Z ¼ 1, Dp ¼ 0:5 and the damping coefficient
g ¼ 0:01 using the Floquet method (calculating system multipliers r and checking the asymptotic stability
condition jrjo1). The stability region is shown grey. The analytical lower stability bound (71) is shown by the
20

15

10

5

0
0 2 4 6 8 10

a2

a1

η

Fig. 2. Coefficients a1 and a2 in formula (67) depending on Z.
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solid line which matches perfectly with the numerical stability boundary. In Fig. 3 the resonances at O � o2

and 2o2 are seen. The primary resonance region (69) is indicated by a bold V-shaped line; of course, this
approximation is not good for large amplitudes d.

Now let Z ¼ 10. Then p0 ¼ �26:91, o2 ¼ 10:74 and condition (68) becomes

14:34þ
22:30O2

O2 � 10:742

� �
d2O2

2
4Dp. (72)

For high excitation frequency Obo2 it reduces to

18:32d2O24Dp. (73)

Fig. 4 shows the stability diagram computed numerically for Z ¼ 10, Dp ¼ 0:1 and g ¼ 0:01 using the
Floquet method. The analytical lower stability bound (72) is shown by solid lines. This theoretical bound is in
a very good agreement with numerical stability region. The high-frequency asymptotic (73) is presented by the
dashed line. For frequencies O\20, the boundaries given by expressions (72) and (73) are very close.

Upper stability bounds correspond to resonances, when the second mode becomes unstable. The resonances
at O � 2o2=k with k ¼ 1; 2 and 4 can be seen in Fig. 4. The primary resonance region (69) is indicated by a
bold V-shaped line. The upper bounds depend weakly on a small parameter Dp. Fig. 4 corresponds to a rather
small value Dp ¼ 0:1. With the increase of Dp, the lower stability bound gets higher, and the middle
stabilization region disappears at about Dp�10, while the low-frequency region is shifted to higher amplitudes
d and gets thinner due to resonances. This is demonstrated in Fig. 5 corresponding to Dp ¼ 2.
Fig. 3. Stability diagram for Z ¼ 1 and Dp ¼ 0:5. Stability region is shaded. Solid line shows the theoretical lower stability bound. V-line

indicates the primary resonance zone approximation.

Fig. 4. Stability diagram for Z ¼ 10 and Dp ¼ 0:1.
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Fig. 5. Stability diagram for Z ¼ 10 and Dp ¼ 2.
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We conclude that, away from parametric resonance regions, stabilization by periodic excitation is possible
for the whole range of excitation frequencies: low, medium and high compared with the second eigenfrequency
of the system.

7. Conclusion

In this paper we considered the problem of stabilization of a weakly unstable system by parametric
excitation of arbitrary frequency. A general stabilization condition is obtained. This condition contains a
coefficient a, which is given explicitly by Eq. (29) in the form of integrals with the critical mode and the system
matrices. Another form of the coefficient a with the modal expansion is given in Eq. (35). Both forms of this
coefficient are useful for applications. In the case of harmonic excitation a simple formula (36) is derived
showing the influence of eigenfrequencies and modes on the stabilization bound. The case of high-frequency
excitation follows as a limit from general formulas.

The obtained stabilization condition is valid for non-resonant excitation frequencies. It is shown that, in
addition to usual parametric resonances, there are special cases associated with the multiplier r ¼ 1 of
multiplicity 4. The analysis of this type of resonance requires separate study. It seems that oscillations
observed at about the second eigenfrequency in Ref. [15] (Figs. 3 and 7) correspond to this special resonance.

The obtained results can be extended to the case of infinite degrees-of-freedom systems. In this case, the
system matrices must be substituted by the differential operators, and the product like vTumust be understood
as a scalar product in the corresponding functional space.

The considered simple example with two degrees of freedom reveals an interesting phenomenon: the
statically unstable system can be stabilized by low-, medium- and high-frequency excitation compared with the
second eigenfrequency of the system. This analytical result agrees very well with the numerical stability
analysis. Experimental verification of the recognized phenomenon appears to be a new challenge.
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Appendix A

Let us derive formula (33) for the coefficient a in relation (29). First, we prove the following expansions:

I ¼
X

uksv
T
ks þ u0v

T
1 þ u1v

T
0 ,

A0 ¼
X

siokuksv
T
ks þ u0v

T
0 ,
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X0 ¼
X

esioktuksv
T
ks þ u0v

T
1 þ u1v

T
0 þ tu0v

T
0 ,

X�10 ¼
X

e�sioktuksv
T
ks þ u0v

T
1 þ u1v

T
0 � tu0v

T
0 ,

F0 ¼
X

esiokuksv
T
ks þ u0v

T
1 þ u1v

T
0 þ u0v

T
0 ,

G�1 ¼
X
ðesiok � 1Þ�1uksv

T
ks þ u0v

T
0 þ u1v

T
1 , (74)

where
P

denotes the summation of the first term with respect to k ¼ 2; . . . ; n and s ¼ �1; the diadic products
like u0v

T
1 represent 2n� 2n matrices.

Expressions for I and A0 are checked by multiplying both sides by the vectors u0, u1, uks and using Eqs. (10),
(13), (32); these vectors form the basis of 2n-dimensional space x. Expansion for the matrix X0 ¼ expðA0tÞ is
found using the Taylor series of exponent

expðA0tÞ ¼ Iþ A0tþ
1

2!
A2

0t2 þ
1

3!
A3

0t
3 þ � � � . (75)

With Eqs. (10) and (32), it is easy to show that for s41

As
0u0 ¼ As

0u1 ¼ 0; As
0uks ¼ ðsiokÞ

suks. (76)

Hence,

As
0 ¼

X
ðsiokÞ

suksv
T
ks; s41. (77)

This expansion can be checked by multiplying As
0 by the basis vectors u0, u1, uks and using Eq. (76) with

orthonormality conditions (13), (32). Substitution of the expansions for I, A0, A
s
0 from Eqs. (74), (77) into

Eq. (75) yields the expansion for X0 in Eq. (74). Since X�10 ¼ expð�A0tÞ and F0 ¼ expðA0Þ, the corresponding
expansions in Eq. (74) are obtained from the expansion for X0 by changing t!�t and t! 1, respectively.

Using expansions (74) for F0 and I, we obtain

G ¼ F0 � Iþ u1v
T
1 ¼ ðe

siok � 1Þuksv
T
ks þ u0v

T
0 þ u1v

T
1 . (78)

This matrix satisfies the equations

Gu0 ¼ u1; Gu1 ¼ u0; Guks ¼ ðe
siok � 1Þuks. (79)

Multiplying both sides of these equations by G�1, one obtains

G�1u0 ¼ u1; G�1u1 ¼ u0; G�1uks ¼ ðe
siok � 1Þ�1uks. (80)

Now the last expansion in Eq. (74) can be checked by multiplying G�1 by the basis vectors u0, u1, uks and using
Eq. (80) with orthonormality conditions (13), (32).

Note also the following modal expansion for the mass matrix:

M�1 ¼
Xn

k¼1

wkw
T
k . (81)

It can be checked by multiplying both sides by the vectorsMwk0 , k0 ¼ 1; . . . ; n (these vectors form a basis in the
n-dimensional space), and using the orthonormality conditions (3).

Introducing the new vectors uðtÞ, vðtÞ and using Eqs. (8), (11), (12), (17) with similar equations for
F0 ¼ X0ð1Þ, we obtain

uðtÞ:¼
qA
qd

X0ðtÞu0 ¼
0

�M�1BðtÞw1

 !
,

vTðtÞ:¼vT0F0X
�1
0 ðtÞ

qA
qd
¼ ð�wT

1BðtÞ 0Þ. (82)
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Via Eqs. (11), (12), (31), we find

vT0 uðtÞ ¼ vTðtÞu0 ¼ �B1ðtÞ; vT1 uðtÞ ¼ vTðtÞu1 ¼ 0,

vTðtÞuks ¼ �BkðtÞ; vTksuðtÞ ¼ �
BkðtÞ

2siok

(83)

with BkðtÞ ¼ wT
1BðtÞwk; here we also used symmetry of the matrix B.

Expression (29) after substitution of Eqs. (21), (30), (82) takes the form

a
wT
1C1w1

2
¼

Z 1

0

Z t

0

vTðtÞX0ðtÞX
�1
0 ðtÞuðtÞdtdt�

Z 1

0

Z 1

0

vTðtÞX0ðtÞG
�1F0X

�1
0 ðtÞuðtÞdtdt. (84)

Expansions (74) with orthonormality conditions (13), (32) yield

X0ðtÞX
�1
0 ðtÞ ¼

X
esiokðt�tÞuksv

T
ks þ ðt� tÞu0vT0 þ � � � ,

X0ðtÞG
�1F0X

�1
0 ðtÞ ¼

X esiokð1þt�tÞ

esiok � 1
uksv

T
ks þ ð1þ t� ttÞu0vT0 þ � � � , (85)

skipping the terms with u1 and vT1 (denoted by dots), which vanish after multiplication by vTðtÞ and uðtÞ in
Eq. (84) due to Eq. (83). Substituting Eq. (85) into Eq. (84) and using Eq. (83), we obtain

a
wT
1C1w1

2
¼

Z 1

0

Z t

0

B1ðtÞB1ðtÞðt� tÞ þ
Xn

k¼2

BkðtÞBkðtÞeiokðt�tÞ

2iok

þ c:c:

� � !
dtdt

þ

Z 1

0

Z 1

0

B1ðtÞB1ðtÞttþ
Xn

k¼2

BkðtÞBkðtÞeiokð1þt�tÞ

2iokð1� eiok Þ
þ c:c:

� � !
dtdt, (86)

where, in the second integral, we used
R 1
0 B1ðtÞdt ¼ 0 following from the condition B ¼ 0. The first terms in

square brackets correspond to s ¼ þ1, and c:c: denotes the complex conjugate terms corresponding to
s ¼ �1.

Now recall the general formula of calculusZ 1

0

Z 1

0

f ðt; tÞdtdt ¼

Z 1

0

Z t

0

ðf ðt; tÞ þ f ðt; tÞÞdtdt, (87)

and note that the relation Z 1

0

Z t

0

BkðtÞBkðtÞðts þ tsÞdtdt ¼ 0 (88)

is valid for k ¼ 1; . . . ; n and any sX0 (it follows from Eq. (87) with f ðt; tÞ ¼ BkðtÞBkðtÞts and B ¼ 0).
The B1ðtÞB1ðtÞ terms in Eq. (86) after transformations using Eq. (87) and then Eq. (88) with s ¼ 1 reduce toZ 1

0

Z t

0

B1ðtÞB1ðtÞð2ttþ t� tÞdtdt ¼ 2

Z 1

0

Z t

0

B1ðtÞB1ðtÞðt� 1Þtdtdt. (89)

Similarly, using Eq. (87) in BkðtÞBkðtÞ terms, we getZ 1

0

Z t

0

BkðtÞBkðtÞ
2iok

eiokðt�tÞ

1� eiok
þ

eiokð1�tþtÞ

1� eiok

� �
dtdtþ c:c. (90)

Interchanging the second term in the parentheses by its complex conjugate counterpart eiokð�1þt�tÞ=ðe�iok � 1Þ
in c:c:, we obtainZ 1

0

Z t

0

BkðtÞBkðtÞeiokðt�tÞ

iokð1� eiok Þ
dtdtþ c:c: ¼ 2

Z 1

0

Z t

0

Im
BkðtÞBkðtÞeiokðt�tÞ

okð1� eiok Þ
dtdt. (91)

Using Eqs. (89) and (91) in Eq. (86), we get expression (33).
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Appendix B

Here we derive formula (50). Let us introduce the function

FkðtÞ ¼
X1
m¼1

wT
1B
0
mwk sinðmOtÞ � wT

1B
00
mwk cosðmOtÞ

mO
, (92)

which satisfies the equations

_Fk ¼ BkðtÞ;

Z T

0

FkðtÞdt ¼ 0;

Z T

0

BkðtÞtdt ¼

Z T

0

tdFkðtÞ ¼ TF kðTÞ. (93)

In the last equality we used integration by parts and the previous equations. Using Eq. (87) with f ðt; tÞ ¼
BkðtÞBkðtÞtt and Eq. (93), we find

4

T2

Z T

0

Z t

0

BkðtÞBkðtÞðt� TÞtdt dt ¼ 2F2
kðTÞ �

4

T

Z T

0

Z t

0

BkðtÞBkðtÞtdtdt. (94)

Then the integral is transformed using integration by parts and Eq. (93) as

4

T

Z T

0

Z t

0

BkðtÞBkðtÞtdtdt ¼
4

T

Z T

0

Z t

0

BkðtÞtdt
� �

dFkðtÞ

¼ 4F2
kðTÞ �

4

T

Z T

0

F kðtÞBkðtÞtdt ¼ 4F 2
kðTÞ �

2

T

Z T

0

tdF2
kðtÞ

¼ 2F2
kðTÞ þ

2

T

Z T

0

F 2
kðtÞdt. (95)

Using Eqs. (94), (95) in Eq. (48), we obtain

a ¼ �
2

TwT
1C1w1

Xn

k¼1

Z T

0

F 2
kðtÞdtþOðT4Þ. (96)

Expression (50) follows from Eq. (96) after substitution of Eq. (92).
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