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Abstract

A linear vibrational system with multiple degrees of freedom subjected to parametric excitation is considered. It is
assumed that the system is statically unstable but close to a critical point, the excitation amplitude and damping are small,
and the excitation frequency is arbitrary. A new stabilization condition is derived in terms of integrals depending on
eigenfrequencies and modes of the undisturbed conservative system and the symmetric excitation matrix. As a special case,
an approximation for high-frequency excitation is deduced from this condition. Influence of damping on stabilization
region is shown to be very small. Two examples for systems with one and two degrees of freedom are presented. It is shown
that stabilization of statically unstable systems is possible for low, medium and high excitation frequencies.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Perhaps, Stephenson [1] was the first who showed 100 years ago that a pendulum in its inverted, statically
unstable position can be stabilized by suitably high-frequency excitation of the pivot. He also confirmed his
theoretical prediction by a practical demonstration of the phenomenon. Then, in his subsequent, less known
paper Stephenson [2] showed that an inverted double and even triple pendulum can be stabilized in the same
way.

Among other works on stabilization of statically unstable systems we should mention the contributions by
Kapitza [3,4], Chelomei [5,6], Bogoliubov and Mitropol’sky [7], Acheson [8], Acheson and Mullin [9],
Chelomei [10], Blekhman [11], Champneys and Fraser [12], Thomsen [13], Seyranian and Seyranian [14],
Yabuno and Tsumoto [15] and many others. All these works deal with high-frequency stabilization problems.
However, in the recent paper by Seyranian and Seyranian [16] it is shown that a statically unstable elastic
beam, compressed by an axial periodic force, can be stabilized in its horizontal position by the excitation
frequencies of the order of the main frequency of transverse vibrations of the beam.

Formally, the theory of high-frequency excitation is based on the assumption that the excitation frequency
Q is much higher than all eigenfrequencies of the system. Thus, 1/Q is considered as a small parameter. In our
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paper, we do not impose restrictions on the excitation frequency. It is quite natural and necessary, for
example, for stabilization problems of infinite degree-of-freedom systems, having arbitrarily high
eigenfrequencies corresponding to higher modes.

In this paper we raise a new question: Can a statically unstable system be stabilized by medium- or low-
frequency excitation? In our study, we focus on systems, which are weakly unstable. Such systems depend on a
parameter p, taken close to a critical stability value p,. In other words, we study stabilization by periodic
excitation for arbitrary Q assuming that Ap = p — p, is a small parameter (on the contrary to the high-
frequency approach when Ap is arbitrary and 1/Q is small). Excitation amplitude ¢ is also assumed to be small.

Our approach is based on the analysis of bifurcations of multiple multipliers of a periodic system [17] with
respect to small parameters Ap and ¢ (a double multiplier with a Jordan block that appears at p, and é = 0).
This approach is used in Section 2 to derive a stabilization condition for a general linear finite-degrees-of-
freedom vibrational system with arbitrary excitation frequency Q. In Section 3 we rewrite this condition in
terms of eigenfrequencies and modes of the undisturbed conservative system, determining explicitly
the stabilizing or destabilizing effect of each mode. The effect of dissipative forces is discussed in Section 4.
We show that this effect is typically very small. In Section 5, from the obtained formulaec we derive
approximation for high-frequency excitation. In Section 6 we present simple examples of systems with one and
two degrees of freedom. In the second example it is shown that, away from parametric resonance regions,
stabilization by parametric excitation is possible for the whole range of excitation frequencies: low, medium
and high compared to the second eigenfrequency of the system. Some complicated derivations are collected in
Appendices A and B.

2. Influence of periodic excitation on the stability bound

Consider a linear vibrational system of the form
M4 + (C(p) + 9B(1))q = 0, (1)

where M, C and B are real symmetric n x n matrices, p and ¢ are real constant parameters, and the dots denote
derivatives with respect to time ¢. The matrix M is positive definite, and the matrix B(z) = B(z 4+ T) is time-
periodic with period 7 = 27/Q and frequency Q. Taking 6 = 0, we obtain the autonomous conservative
system

Mg + Cq = 0. )

The trivial solution q = 0 is stable if the matrix C(p) is positive definite. In this case the eigenfrequencies
0<w;< - <w, and corresponding eigenmodes w; for system (2) satisfy the following equations and
orthonormality conditions

Cw;, = w,szwk, szwkr = 5;’5, 3)

where 52’ is the Kronecker delta.
Egs. (1)—(3) remain unchanged under the transformation (changing the time scale)

t=Ti, C=C/T?* B@)=B®/T* w=dy/T, 4)

where the matrix B(7) = B(7 + 7T') has period 7 = 1. So, below we assume that 7 = 1, omitting the tildes.

Let p = p, be the critical value, such that system (2) is stable at p <p, and unstable at p > p,. Then the matrix
Co = C(p,) is singular, i.e., has zero eigenvalue. We consider a generic case, when there is a single critical mode
described by the eigenvector wy:

CoW] = 0, (5)
ie., o =0and 0<w, < --- <w,. Since the system is stable for p<p,, the matrix C(p) ~ Cy + (dC/dp)Ap is

positive definite for small negative Ap = p — p,. In particular, wf Cw; >0, which via Eq. (5) leads to the
condition

wiCiw; <0, C;=dC/dp| (6)

p=pro’
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System (1) can be written as
X = A()x ()
with

q A 0 I
*“\a) MO -mep+aay o) ®

where I and 0 are the identity and zero n x n matrices, respectively. The matrix A(z) = A(¢ + 1) is periodic and
depends on constant parameters p and J. At 6 = p — p, = 0, the matrix

A 0 ! 9
0= —M_ICO 0 ©)

is time independent. It has a double zero eigenvalue with second-order Jordan block structure:
Aoll() = 0, Aoul = Uy (10)

with the eigenvector and associated vector (generalized eigenvectors)

e 0 11
W=\, ) =y ] (11)
We also define the left eigenvectors

0 MW]
Yo = Mw, )’ V1=< 0 ) (12)

that satisfy the equations and orthonormality conditions

ngo =0, vlTAo = vg, vguo = vlTul =0, vlTuo = vgul =1. (13)

Let us introduce a fundamental matrix X(7) for system (7) satisfying the equation with the initial condition
X=A0X, X0)=L (14)

This matrix gives a solution x(¢) = X(#)xo of system (1) with an arbitrary initial condition x(0) = x¢. The
Floquet (monodromy) matrix is defined as

F = X(1). (15)

The eigenvalues p of the Floquet matrix are called multipliers. Multipliers of system (1) possess the symmetry:
if p is the multiplier, then 1/p is also a multiplier [18]. The trivial solution q = 0 is stable if and only if all the
multipliers lie on the unit circle |[p| = 1 and do not form Jordan blocks.

For 6 =0 and p = p,, system (14) becomes X = A¢X. Since A is time independent, we have

Xo(2) = exp(tAg), Fo = exp(Ay). (16)
It is easy to see that
Xoug =ug, Xou; = uy + fug, VOTX() = VOT, VTX() = V]r + tvg, (17

and similar expressions for Fo with # = 1. This means that Fy has a double multiplier p, = 1 with the right and
left Jordan chains ug, u; and vy, v;.

The other multipliers p = exp(Ziwg), k = 2,...,n, are assumed to be simple and complex (the system is not
at the resonance). This means that

oy £ oy #21j (18)

for any positive integers k, k', j. For arbitrary period 7T =2n/Q, this condition takes the form
Q+#(wy + wy)/j. Stability analysis in the resonance cases wy + wp ~ 2rj with k,k'>1 can be carried out
using methods of parametric resonance theory, see e.g., Ref. [17]. The resonances with k' =1, so that
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oy ~ 2mj, are degenerate: at the resonance point, the multiplicity of the multiplier p = 1 increases to 4. These
cases require special study and are not considered in this paper. Below in this section we assume that the
system is not close to resonances.

For small perturbations of parameters p and ¢, simple multipliers p = exp(%iwg), kK = 2,...,n, remain on
the unit circle |p| = 1. Hence, for stability, we have to study only the perturbation of the double multiplier
p=1

Perturbation of this double multiplier is described by the asymptotic formula [17, pp. 37, 38]

oF
pP = 1+ \/ gpAp +g(557 9o = VoTa“Oa xe {[7,5}, (19)

where derivatives are taken at p = p,, 6 = 0. Using Eq. (19) in the equality |p| = 1 gives the first-order stability
condition as

9,Ap + 950 <0. (20)

For derivatives of the Floquet matrix one has the formula [17, p. 280]
F : A
&= Fo [ O O = X075 X0, @1
Qo 0 0o
Using Egs. (8), (11), (12), (17), (21) in Eq. (19), we find
1
g,=-w Ciwi, g;=—-wBw;, B= / B(r)dz. (22)
0

Thus, condition (20) takes the form
W Ciwi(p — py) + W Bw;6>0. (23)

Recall that w/ Cyw; <0. -

Below let us consider the case B = 0. Then the first approximation (23) yields p <p,. Thus, the stabilization
effect is described by the second-order approximation. The general form of the stabilization condition
becomes

p<po+ ad*/2 + o(5%) (24)
with an unknown coefficient a. The critical value of p (stability boundary) is
Peor = Do+ a0 /2 + 0(57). (25)

Consider a perturbation along the stability boundary p = p, + ad* /2 + 0(8%). Since Ap~6® and g5 = 0, the
square root term in Eq. (19) is proportional to d and, hence, exceeds the order of the expression o(d'/?). In this
degenerate case, the asymptotic expression for p starts with the first power of § as [17]

p =14 udé + o(9), (26)

where two different values of u are determined from the quadratic equation

W o4 oy = 0. 27
The coefficients o and o, are [17, p. 39]
oF oF
_ T T
o1 = —VY a5111 \Sl aéu(),

36 5 20352

OF ., 0F 10°F 1 LOF d’p
T -1 T
2= (_ )“O_EVOE“OW’
G=F—I+uyv]. (28)

Note that we took the term u;v] in the matrix G instead of vov] suggested in Ref. [17]; in fact, one can show
that using any diadic product zv] with the vector z, not proportional to uo, gives the same value of a;.
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Using Egs. (8), (11), (12), (17), (21) in Eq. (28), we find «; = wBwy = 0 due to B = 0. Then p = +./—u.
The stability condition |p| = 1 with the expansion (26) yields oy >0; equation o, = 0 is the critical (stability
boundary) condition. The last term for o, in Eq. (28) is found in Egs. (19), (22) with dzp/dé2 = a according to
Eq. (25). Using Eq. (28) in the condition a, = 0 yields the unknown constant

10°F OF __, OF
T -1 T
a = 2V0 (2652 - $G aé)uo/(w] Clwl). (29)
The second derivative of the Floquet matrix can be found as [17, p. 281]
62F 1 t
— = 2F0/ / H;(1)H;s(t) dr dt (30)
00 o Jo

with Hs(¢) defined in Eq. (21).

Expression (25) with the coefficient a given by Eqs. (29), (21), (30) provides the critical load of the system
under parametric excitation. These expressions give a explicitly in the form of integrals in terms of the critical
mode w; and the matrices M, Cy, B(¢) according to Egs. (8), (9), (16). Stabilization of a statically unstable
system with p>p, is possible only if a>0. Then, according to Eq. (24), the system is stabilized by the
excitation with amplitudes 6 > /2Ap/a.

3. Modal expansion of the critical load

Let us express the coefficient a in terms of the eigenfrequencies w; and eigenmodes wy of the conservative

system (2), (3). In addition to 4y = 0, the matrix Ay possesses the eigenvalues Ay, = olw; with k =2,...,nand
o = *£1. The corresponding right and left eigenvectors are
Wiy MWk/Z 11
o = Giogwy )2 97 T\ Mwi/Qaioy) | (1)

These vectors satisfy the equations and orthonormality conditions

. T - T
Aouye = OlwWis, Vi, A9 = OlOgVy,,

T K so’ T T T T / . /
Vi Ui/ = 0f O VoUe =V W =V W=V, 0 =0, kk=2,...,n 0,6 ==%l. (32)

g

Expression (29) can be written in terms of eigenmodes and eigenfrequencies as (the lengthy derivation of this
formula is given in Appendix A)

4 1 t
a=—
WlTC1W1/0 /0

where the real scalar quantities By () describe the modes interaction through the excitation term

By (1) = w| B({)Wy. (34)

_ " Br(f)Bi(r)e k=0
Bi()Bi(t)(t — 1)t + ; Im o eiwk)

] dedt, (33)

For systems (1) with arbitrary period T, backward substitution of Eq. (4) in Eq. (33) yields
4 T 1 B(OBi(x)(t—T "\ Bi()Bi(r)el =
am [ [ BB =D S BB
wiCiwi /o Jo =

T? wrT(1 — eionT)
Expression (35) determines the change of the critical load (25) in terms of the frequencies and modes of the
initial non-excited system.
In the particular case of harmonic excitation B(¢) = By cos Q¢, integration in (35) yields

1 " (W Bowy)?
a=— . 36
w?clwl; Q@ -} (36)

] drdt. (35)
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According to Eq. (6), wIC;w; <0. Thus, in the case of harmonic excitation, the eigenmodes with frequencies
wy < supply positive terms in the coefficient a (stabilizing effect), while the eigenmodes with frequencies
wy > Q give negative terms in a (destabilizing effect). The term corresponding to the critical mode w; =0
is always positive (stabilizing).

4. Effect of dissipative forces

Let us consider system (1) taking into account small dissipation:
Mg +yDq + (C(p) + 0B(1))q = 0, (37

where D is a real symmetric positive definite n x n matrix, y>0 is a small dissipation parameter. As in the
previous section, we take the period T = 1.
The critical parameter p_.(J,7) can be expanded in the power series in both ¢ and y:

Pa=Po+ By +byy? +-- )+ 1y + ey’ +--)0+ad* )2+ - (38)

In this section, we study the structure of terms containing y in this expansion.

In the absence of parametric excitation § = 0, dissipative forces cannot stabilize or destabilize a linear
autonomous conservative system [19]. Hence, p.,(0,7) = py, i.e., none of the terms y*, k = 1,2,... is present in
expansion (38). Remark that this statement can also be confirmed by the perturbation technique used in
Section 2.

Assume that the parameter y>0 is fixed. System (37) is transformed to the first-order equation (7) with the
matrix

0 |
AQ) = ( —M~(C + 5B(1)) —yMlD> : (39)
At 6 = p — py = 0, this matrix is time independent:
0 I
Ao = (_M1C0 _VMID) (40)
It has the simple zero eigenvalue with the eigenvectors
w yDw
o= ( Ol)’ Vozywli)wl (zl)\/[w11>’ @1

satisfying the normalization condition vjuy = 1.
Let us introduce the matrices (14)—(16) with the new A and Aj. Then the eigenvectors (41) satisfy the
equations
F()llo = Xollg = Up, VOTX() = VOTF() = VOT, (42)
similar to Eq. (17). This implies that p = 1 is the simple multiplier of the Floquet matrix Fy. Derivatives of this
multiplier with respect to p and ¢ are given by [17, p. 290]

0
£ —p / vIX;! (z) Xo(l)uodt %€ (p, o). 43)
Using Eqs. (39), (41), (42) in Eq. (43), we obtain the derivatives of the multiplier at the point p — p, = =0 as
0 Ic 0 wiB
O _ _wiCwi_o O wiBw _ (44)
op ywl ywIDw, GIY Wi Dw,

Here we used Eq. (6) and the assumption B = 0.

System (37) is asymptotically stable if all the multipliers lie inside the unit circle |p| < 1. First consider the
autonomous system (37) with p = p, and 6 = 0. This system has a bounded solution q(#) = w;. The other
2n — 1 linear independent solutions decay in time exponentially due to dissipation. This means that all the



1022 A.A. Mailybaev, A.P. Seyranian | Journal of Sound and Vibration 323 (2009) 1016-1031

multipliers lie inside the unit circle, except for a simple multiplier p = 1. Under a change of p and o, the
multiplier p = 1 moves along the real axis. The stability condition is p<1. Using Eq. (44), we write this
condition as p — p, + o(Ap, §) <0. Hence, the critical value p.. = p, + 0(J). Since this condition is obtained for
arbitrary 7, none of the terms y*5, k = 1,2, ... is present in expansion (38).

We conclude that the small dissipation changes the coefficient in relation (25):

Per = Do +a(2)5° /2 + 0(57), (45)

where a(0) is given by Eq. (35). We see that the effect of dissipation on the critical parameter is usually very
small. If the excitation matrix is time-reversible B(¢) = B(#y — ) for some ¢, then system (37) is invariant
under the transformation ¢t — fy — ¢t and y — —y. Hence, odd powers of y, that change sign under this
transformation, cannot appear in the expansion of p.(J,y). In this case, the first correcting term due to
dissipation is of order y25>.

5. High-frequency excitation

Let us consider the case when the frequency of parametric excitation Q is much higher than all natural
frequencies of the system ws,...,w,. In this case w; T <1, so we can expand the exponents in Eq. (35) with
respect to w; T and w(z — 1) as

elon(r=1) 1 t—t (t— r) 1 )
I - = — - — T 4
ma)kT(l — elowT) wiTz—i_ 2T 277 12+ o). (46)
Then, using relation (88) from Appendix B with s =0, 1,2, we obtain
T ook (1— T
Bi()By(r)elo+ (=9 1 / / 4
I A drdt = — Bi(t)B t—T)rded? 7). 47
| [ PO i = o [ [ B = Dededr+ ot @7
Using Eq. (47) in Eq. (35) yields
/ / Bi(t)Br(1)(t — T)rdrdr + O(T*). (48)
C1w1 k=1

This expression gives the high excitation frequency asymptotics of Eq. (35). Since the value of the integral in
Eq. (48) is of order T*, we have a~T>~Q72.
We take the matrix B(¢) in the form of Fourier series
21
B()=)» B, Q1)+ B/ Qn, Q=— 49
(1) = Z cos(mQ1) + By, sin(mQu), T (49)

m=1

(there is no constant term since B = 0). Then the integration in Eq. (48) can be done (see Appendix B) giving

1 (WIB, wi)* + (WIB/ wy)? .
a= o m + O(Q277). 50
wiCiw, kz:l ,; (mQ)* @) (50)

Using expansion (81) from Appendix A, the summation with respect to k in Eq. (50) is carried out giving

1 Z (B lB/ B// lB// )wl

_ m m
T
Wy C1W1 e

(mQ)2 + 0Q™. (51)
1

This formula yields the coefficient a for high excitation frequency @ in terms of Fourier coefficients of the
excitation matrix B(7). In the particular case B(¢) = B cos Q¢, expression (51) becomes

_ WTB0M71B0W1

Q2+ 0(Q7%. 52
WICw +0(Q7) (52)
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Another form of this expression follows from Eq. (50) as

Z(w Bow,)* + 0(Q7*), (53)
Wl C1W1
which agrees with Eq. (36) for high excitation frequencies Q2.

Note that expression (51), which we obtained as the asymptotics of Eq. (35) for high excitation frequencies
Q, can also be derived by means of averaging method. Indeed, for large Q, the term o(B;, cos(mQr) +
B/ sin(mQ¢))q in the right-hand side of Eq. (1) can be substituted by the time-independent effective stiffness

m

term 6°Bq with [20]
B/ M_lB;,n + B// M—lB//

Beff —_m m m. 54

m om0y (54)

Then by using methods of perturbation theory for autonomous systems [17], we obtain the critical load (25) with
> Be fwl

) m , 55

>, (59)

which coincides with Eq. (51).

6. Examples

In this section we consider examples for systems with one and two degrees of freedom. For a system with
one degree of freedom Eq. (1) is the Hill equation

G+ (=p + 0b(t))q = 0, (56)

where b(¢) is T-periodic function with zero mean value fOT b(t)dt = 0. Then, from relations (24) and (35) we
obtain the stabilization region in the first approximation as

a52 4 T t 2 T 2
p<“- a:T/O b(t)/o b(r)rdrdl—?(/o b(z)zdz). (57)

For T = 2= this formula agrees with that of derived in Ref. [14]. If b(¢) = cos ¢, we obtain ¢ = 1, which is well
known, see e.g., Refs. [13,21].

As a second example, consider an inverted double pendulum consisting of two point masses m; and m;
connected by rigid massless rods of equal length / with two elastic joints of equal stiffness ¢ in the gravitational
field, see Fig. 1. The kinetic and potential energy for this system have the form

= %(ml + M2)120f + %m2120§ + I’Vl2120102 cos(0; — 0,),

0 (0, — 0))?
2T

where ¢ is the acceleration of gravity. With the Lagrange function L = K — V" we derive equations of motion
of the system linearized near the vertical position 0; = 0, =0 as

V= + (my + my)gl cos 01 + mygl cos 0, (58)

(my + ma) POy + malP0, + (¢ — (my + ma)gh)y — b, = 0,

myP(0) 4 0,) — ¢y + (¢ — magl)0, = 0. (59)

Let us consider a periodic excitation of the support z = acosQ¢. Then, according to the d’Alembert
principle, in the equations of motion (59) we must substitute g by g + Z.
For convenience we introduce non-dimensional time and parameters

. a c ~ Q my
F=Q% o6=- =——, Q=— =— 60
B 17 [7 mlgla Q*’ 1/’ ml’ ( )
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m,

i z(t)

Fig. 1. Inverted double pendulum subjected to periodic excitation of the support.

where Q* = \/g/I. In non-dimensional variables the linearized equations of motion of the system take the
form of Eq. (1) with B(¢) = By cos Q¢ and the matrices

+1 —2p—n—1 l+n 0
m= (" 1 , C= P P , By=@Q° 1 . (61)
noon P —-p—n 0 7

Here and below we omit tildes. The negative parameter p is introduced in order to match the theoretical part
of the paper, where the unstable system corresponds to p> p,.
Taking into account viscous friction forces in the hinges determined by the dissipative function

F = Vé?/ 2+ 9(0, — 0,)*/2 yields the system in the form (37) with the dimensionless dissipation parameter
7 =7/(Q*mI*) and the matrix
D 2 -1 .
“\-1 1)

For the case of no excitation 0 = 0, system (59) is stable if and only if the matrix C is positive definite.
Simple analysis shows that the matrix C is positive definite when the parameter p satisfies the inequality

3+ 1+ + 2+ 1
n+ 1+ 2n+11+. 63)

P<Pyp» Pop=—

At p = p,, we find the eigenfrequencies and the corresponding eigenmodes from Egs. (3) and (61) as

Po
w; =0, W1=0€1<2p0+17+1>, (64)

1 n+ o3+ py
= =(5+=)p, =20 + 1), = , 65
0 \/ ( + n)po n+1), wma=w ( —oln+p, (65)

where the scaling coefficients «; and o, are obtained from orthonormality conditions (3).
The matrix C; according to Egs. (6) and (61) is

-2 1
C1=(1 _1>. (66)
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The constant « is given by Eq. (36) as

2
ot (Wi Bowy)
ap = ——1K

2
a=aQ + 7, = .
Qz—wg Q4WTC1W1

(67)
According to Eq. (61), the coefficients | and a, depend only on the mass-ratio parameter 5. This dependence
is shown in Fig. 2; both a; and a; are positive, and a, vanishes at n = 0 and 1. The stability condition is given
by inequality (24), which can be written using Eq. (67) as

anQ \ &Q?
(al —l—g)z%a)%) > >Ap, Ap=p—p,. (68)
The second term in the parentheses describes the effect of the second mode w,. It is unimportant for <2
when a; <a;, and plays an important role for larger 7.

Inequality (68) is a condition for stabilization of the first mode, which is unstable without excitation (6 = 0).
Thus, Eq. (68) is a necessary condition giving a lower bound on the stabilizing amplitude 6. The instability can
also be associated with the second mode due to resonances, giving upper bounds on the stabilizing excitation
amplitude.

When Q ~ 2w, /j with integer j, the system is subjected to parametric resonance. It is known that the
secondary resonances corresponding to j> 1 are effectively suppressed by introduction of the damping term
yD in Eq. (37). The primary resonance Q ~ 2w, represents the most important instability region. In the first
approximation it is given by the inequality [17, p. 350]

9+ (Q = 200)* < E0%, (69)
where
wIBow,)?
C=wiDw,, ¢ =M (70)
2

As we mentioned in Section 2, the values Q &~ w,/j correspond to a specific type of degenerate resonance
associated with the multiplier p = 1 of multiplicity 4, which requires special study.

Let us consider two specific values of 1. For # = 1, we have p, = —3.414, w, = 4.040 and the coefficients
ay = 2, a, = 0. Thus, stabilization condition (68) becomes very simple
82Q* > Ap. (71)

This is a degenerate case since the effect of the second mode disappears, and the high-frequency stabilization
condition is valid in the whole range of excitation frequencies Q.

Fig. 3 shows the stability diagram computed numerically for # = 1, Ap = 0.5 and the damping coefficient
7 = 0.01 using the Floquet method (calculating system multipliers p and checking the asymptotic stability
condition |p|<1). The stability region is shown grey. The analytical lower stability bound (71) is shown by the

A
a.
20 2
15
10 &
5
n
0 >
0 2 4 6 8 10

Fig. 2. Coefficients a; and a; in formula (67) depending on 7.
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solid line which matches perfectly with the numerical stability boundary. In Fig. 3 the resonances at Q ~ w,
and 2w, are seen. The primary resonance region (69) is indicated by a bold V-shaped line; of course, this
approximation is not good for large amplitudes 9.

Now let 7 = 10. Then p, = —26.91, w, = 10.74 and condition (68) becomes

2 202
22.300 >5 Q = Ap. (72)

14.34 +
< Q*—10.74*) 2

For high excitation frequency 2> w, it reduces to
18.326°Q% > Ap. (73)

Fig. 4 shows the stability diagram computed numerically for # = 10, Ap = 0.1 and y = 0.01 using the
Floquet method. The analytical lower stability bound (72) is shown by solid lines. This theoretical bound is in
a very good agreement with numerical stability region. The high-frequency asymptotic (73) is presented by the
dashed line. For frequencies Q= 20, the boundaries given by expressions (72) and (73) are very close.

Upper stability bounds correspond to resonances, when the second mode becomes unstable. The resonances
at Q ~ 2wy /k with k = 1,2 and 4 can be seen in Fig. 4. The primary resonance region (69) is indicated by a
bold V-shaped line. The upper bounds depend weakly on a small parameter Ap. Fig. 4 corresponds to a rather
small value Ap = 0.1. With the increase of Ap, the lower stability bound gets higher, and the middle
stabilization region disappears at about Ap~10, while the low-frequency region is shifted to higher amplitudes
0 and gets thinner due to resonances. This is demonstrated in Fig. 5 corresponding to Ap = 2.

A
05

04
03 r
2]

02 r

0.1

0 5 10 15 20 25 30

Fig. 3. Stability diagram for = 1 and Ap = 0.5. Stability region is shaded. Solid line shows the theoretical lower stability bound. V-line
indicates the primary resonance zone approximation.

0.1
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Q
Fig. 4. Stability diagram for n = 10 and Ap = 0.1.
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Fig. 5. Stability diagram for n = 10 and Ap = 2.

We conclude that, away from parametric resonance regions, stabilization by periodic excitation is possible
for the whole range of excitation frequencies: low, medium and high compared with the second eigenfrequency
of the system.

7. Conclusion

In this paper we considered the problem of stabilization of a weakly unstable system by parametric
excitation of arbitrary frequency. A general stabilization condition is obtained. This condition contains a
coefficient @, which is given explicitly by Eq. (29) in the form of integrals with the critical mode and the system
matrices. Another form of the coefficient ¢ with the modal expansion is given in Eq. (35). Both forms of this
coefficient are useful for applications. In the case of harmonic excitation a simple formula (36) is derived
showing the influence of eigenfrequencies and modes on the stabilization bound. The case of high-frequency
excitation follows as a limit from general formulas.

The obtained stabilization condition is valid for non-resonant excitation frequencies. It is shown that, in
addition to usual parametric resonances, there are special cases associated with the multiplier p =1 of
multiplicity 4. The analysis of this type of resonance requires separate study. It seems that oscillations
observed at about the second eigenfrequency in Ref. [15] (Figs. 3 and 7) correspond to this special resonance.

The obtained results can be extended to the case of infinite degrees-of-freedom systems. In this case, the
system matrices must be substituted by the differential operators, and the product like vTu must be understood
as a scalar product in the corresponding functional space.

The considered simple example with two degrees of freedom reveals an interesting phenomenon: the
statically unstable system can be stabilized by low-, medium- and high-frequency excitation compared with the
second eigenfrequency of the system. This analytical result agrees very well with the numerical stability
analysis. Experimental verification of the recognized phenomenon appears to be a new challenge.
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Appendix A

Let us derive formula (33) for the coefficient a in relation (29). First, we prove the following expansions:

T T T
I= E W Vi, + UgV] + UV,

: T T
Ay = E G100k Wi Vi, + UV,
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X = Z e v vl 4w vy + vy,
X, = Z e " v+ ugv] +upvy — fugy,,
Fy = Z ek ukgvza + uovlT + ulvg + uovoT,

G'= Z(e“i“”* — ) uo vy, A upv 4w, (74)

where > denotes the summation of the first term with respect to k = 2,...,n and ¢ = %1; the diadic products
like ugv] represent 2n x 2n matrices.

Expressions for I and A are checked by multiplying both sides by the vectors ug, u;, ui, and using Egs. (10),
(13), (32); these vectors form the basis of 2n-dimensional space x. Expansion for the matrix Xy = exp(Ao?) is
found using the Taylor series of exponent

exp(Agt) = I+ Aot +%Agﬂ +%A3t3 +oee (75)
With Egs. (10) and (32), it is easy to show that for s> 1
Ajug = Aju; =0,  AQjuge = (oiwg) Uk, (76)
Hence,
A= (io) wev,, s>1. (77)

This expansion can be checked by multiplying Ay by the basis vectors ug, ui, ug, and using Eq. (76) with

orthonormality conditions (13), (32). Substitution of the expansions for I, A, Ay from Egs. (74), (77) into

Eq. (75) yields the expansion for X, in Eq. (74). Since X, I'= exp(—Ao7) and Fy = exp(A,), the corresponding

expansions in Eq. (74) are obtained from the expansion for X, by changing t — —¢ and ¢ — 1, respectively.
Using expansions (74) for Fy and I, we obtain

G=F,—-1+ ulvlT = ("% — l)ulmvzﬁ + uovoT + ulvlT. (78)

This matrix satisfies the equations

Guy=u;, Gu =uy, Gug = (" — Du,. (79)
Multiplying both sides of these equations by G™!, one obtains
Gluyy=u, G luy=uy, G lug =" —1) u. (80)

Now the last expansion in Eq. (74) can be checked by multiplying G~! by the basis vectors ug, u;, uy, and using
Eq. (80) with orthonormality conditions (13), (32).
Note also the following modal expansion for the mass matrix:

M= "wewy. 81)
k=1

It can be checked by multiplying both sides by the vectors Mw,, kK" = 1, ..., n (these vectors form a basis in the
n-dimensional space), and using the orthonormality conditions (3).

Introducing the new vectors u(f), v(z) and using Egs. (8), (11), (12), (17) with similar equations for
Fo = Xo(1), we obtain

5 0
u(t)= %XO(Z)UO = <_M1B(I)W1 ) ’

vT(z):=v0TFox(;1(z)Z—‘g = (—w| B(?) 0). (82)
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Via Egs. (11), (12), (31), we find

vou(?) = v (Huy = —Bi(¢), viu(@) = v (Hu; =0,

By (1)
2aiwk

Vi(Duee = —Bi(1),  viu(t) = — (83)

with By () = wI B()wy; here we also used symmetry of the matrix B.
Expression (29) after substitution of Egs. (21), (30), (82) takes the form

W1C1W1
ai

/ / vI(0)Xo()X,  ()u(r) drdr — / / vI(Xo()G'FoXy ! (t)u(r) dr dr. (84)
Expansions (74) with orthonormality conditions (13), (32) yield
Xo(t)Xa' (r) = Z e“iw"(’_f)ukavzg + (t— ‘c)uovOT +

eo’iu)k(lJrrfr)

Xo()G'FpX; ' (1) = W Vi + (L4t — to)ugvg + -+, (85)

eaiwk —1

skipping the terms with u; and vI (denoted by dots), which vanish after multiplication by v(#) and u(?) in
Eq. (84) due to Eq. (83). Substituting Eq. (85) into Eq. (84) and using Eq. (83), we obtain

w C1W1 / / <BI(Z)BI(‘[)(Z —17)+ Z |:Bk(l)Blzf;)§1wk(t 7) + C.C-:|> drdz

Bk(l)Bk(’L')elwk(1+’ 7)
+ /0 /0 (BI(I)BI(‘E)Z‘C + Z { Do (1 — aion) + c.c.]) drds, (86)

where, in the second integral, we used fo B (t)dt = 0 following from the condition B = 0. The first terms in
square brackets correspond to ¢ = +1, and c.c. denotes the complex conjugate terms corresponding to
o= —1.

Now recall the general formula of calculus

1 pl 1 ot
/0 /0 f(t,71)drdt = /0 /0 (f(t,7) + f(z, 1)) dr dt, (87)
and note that the relation
1 gt
/ / Bi(H)Br(r)(£’ +°)drdt =0 (88)
o Jo

is valid for k = 1,...,n and any s>0 (it follows from Eq. (87) with f(¢,7) = Bi(¢)Bi(t)t* and B = 0).
The B,(f)B;(7) terms in Eq. (86) after transformations using Eq. (87) and then Eq. (88) with s = 1 reduce to

1 t 1 t
/0 /0 Bi()B1(t)2tt + ¢ — 1)drdt =2 /0 /0 Bi(H)By(1)(t — Drdrdr. (89)

Similarly, using Eq. (87) in Bi(?)Bk(t) terms, we get
B B 1(uk(r—‘c) iwp(1—1+1)
/ / K BK() ( S ) drdr +cc. (90)

iwy, — ek 1 — el

Interchanging the second term in the parentheses by its complex conjugate counterpart el“<(~1+/=9) /(e7iox — 1)
in c.c., we obtain

1 ' B.(\B iwg(t—1) 1 t B.())B iw(t—1)
/ / OB ()" drdr4cc. =2 / / fm BLOB D drdr. 1)
10k (1 — ei¥x) o Jo (1 — e?x)

Using Egs. (89) and (91) in Eq. (86), we get expression (33).
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Appendix B

Here we derive formula (50). Let us introduce the function

S wIB wy sin(mQt) — wIB! w; cos(mQt)
F.(f) = 1%m 1 ¥m"K 92
W=D — , 92)
which satisfies the equations
] T T T
Fj = Bi(0), / Fr(t)ydt =0, / Bi(fH)tdt = / tdF(t) = TFy(T). (93)
0 0 0

In the last equality we used integration by parts and the previous equations. Using Eq. (87) with f(¢,7) =
Bi(H)Bi(7)tt and Eq. (93), we find

/ / Bi(t)Br(1)(t — T)tdtrdr = 2F? (1) — —/ / Bi(t)Bi(t)tdrdr. (94)

Then the integral is transformed using integration by parts and Eq. (93) as

4 / / BuhBi(eyrdedr = 2 / ( / Bk(mdr) dFL(1)

4 5 T
= 4Fi(T) - = /0 Fi(0)B(t)yrdt = 4Fi(T) — — /0 tdF2(1)

2 T
=2F(T) += / Fi(1)dt. (95)
0
Using Egs. (94), (95) in Eq. (48), we obtain

a = —

/ F()ydt 4+ O(T*). (96)

TWTC]Wl

Expression (50) follows from Eq. (96) after substitution of Eq. (92).
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